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Abstract. We calculate the Knight shift Kin  simple metals using a general expression for K 
and pseudopotential techniques. K is expressed as the sum K = K ,  + K ,  + K,,,  where K s ,  
KO and K, ,  are the spin, orbital and spin-orbit contributions to the Knight shift, respectively. 
Many-body and spin-orbit interactions are considered and their importance is emphasized. 
Metals with different crystal structures are considered. Results of the present calculations 
are compared with those obtained in some recent works. In contrast to other calculations, 
we obtain good to excellent agreement with experimental results in most of the cases. A 
remarkable feature of our results is the explanation of the negative Knight shift in beryllium. 
The fact that the theory explains the Knight shift in several metals suggests that various 
important mechanisms are accounted for adequately. 

1. Introduction 

We present a detailed calculation of the Knight shift Kin simple metals using a recently 
derived expression for K by Tripathi et a1 (1981,1982) and a pseudopotential formalism 
(Phillips and Kleinman 1959, Harrison 1966). Although the subject has been explored 
extensively during the last two decades (Tterilikkis etal 1969, Mahanti etal 1970, Mahanti 
and Das 1971, Perdew and Wilkins 1973, Styles and Tranfield 1978, Zaremba and Zobin 
1980, Manninen and Jena 1980, Wilk et a1 1981, Nusair et a1 1981) there still remain 
unanswered questions. For example, the negative Knight shift of beryllium (Barnaal et 
a1 1967, Anderson et a1 1967) was unexplained for a long time. This was mainly due to 
the use of the conventional formula for the Knight shift given by Townes et a1 (1950): 

where K, is the spin contribution to the Knight shift, xs is the exchange-enhanced spin 
susceptibility and ( . . . is the spin density averaged over the Fermi surface. Both x, 
and spin density are positive quantities. Thus the formula proved inadequate to explain 
the negative Knight shift. The effects of core polarization (Cohen et a1 1959, Gaspari et 
a1 1964) and electron diamagnetism (Landau 1930) were invoked (Jena et a1 1968, 
Gerstner and Cutler 1969) in the past for the possible explanation of this unique result, 
but without much success. Furthermore, there has been no systematic theory which 
explains the Knight shift of a large number of metals with diverse characteristics. 
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Recently Tripathi et a1 (1981, 1982) derived a general theory of the Knight shift in 
solids including many-body and spin-orbit effects from first principles. Their theory 
considers all the magnetic hyperfine interactions and is expressed as 

K = K ,  -I- K ,  + K,, (1.2) 
where K,, as mentioned earlier, is the spin contribution to the Knight shift but is 
distinguished from (1.1) in the sense that it involves the effective g-factor instead of xs; 
KO is the orbital contribution; and K,, is the result of the effect of spin-orbit interaction 
on the orbital motion of Bloch electrons. The effect of spin-orbit interaction on the spin 
of electrons is taken care of via the effective g-factor occurring in K,. The theory was 
later improved to include the effects of indirect nuclear hyperfine interaction (Tripathi 
1985, Tripathi et aZ1987) and electron-phonon interactions (Tripathi et a1 1989). While 
the effect of indirect nuclear hyperfine interaction is not relevant for simple metals, the 
electron-phonon interaction does not modify the Knight shift significantly. 

We report in this paper the results of our calculations of the Knight shift in simple 
metals using equation (1 -2) and a non-local pseudopotential formalism. While brief 
reports of these calculations were published earlier (Mishra etall984,1986), we present 
here details of these calculations and, in addition, some new results. In section 2 we 
discuss the non-local model potential used in the calculation. In section 3 we use 
the wavefunctions obtained following the pseudopotential formalism to evaluate the 
momentum matrix elements, hyperfine interaction matrix elements, chemical potential 
and the exchange enhancement parameter occurring in the different contributions to K .  
In section 4 we evaluate the Knight shift and section 5 contains a discussion of our results. 
Finally, in section 6 we present a brief summary and the concluding remarks of the work. 

2. Non-local model potential 

In the present work the optimized model potential proposed by Shaw (1968) is adopted. 
The Shaw potential has the advantage over the Ashcroft potential (Ashcroft 1968) in 
the sense that it lends itself readily to a variational optimization procedure. The condition 
for optimization gives a direct way to determine the model radii. Furthermore, it is 
intrinsically both non-local and energy dependent, and is not determined from any 
experimentally obtained property of the solid or liquid state. 

The model potential is regarded as a combination of the bare ion potential and the 
self-consistent potential of all other electrons. We evaluate the self-consistent potential 
following Shaw and Harrison (1967), which is determined from the electron density by 
Poisson’s equation. The actual electron density n(r) can be regarded as a sum of two 
terms, a termq ,$p(r)qnkp(r) from the model wavefunction and a contribution from the 
oscillating part of the real wavefunction localized in the core region. Following Shaw 
and Harrison (1967), we write 

where the depletion hole charge p which is taken to reside at the centre of the ion is 
given by 

where W is the pseudopotential and Ek is the one-electron energy 
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We evaluate the pseudowavefunctions by using degenerate perturbation theory, so 
that we consider coupled bands. At any point on a Bragg reflection plane there are two 
states of the same energy which are coupled; on the line of intersection there are three 
states that are coupled, and where two such lines intersect, four states are coupled. 
However, in order that the problem can be solved analytically, we consider the case of 
a general point on the plane so that the unperturbed eigenvalue is doubly degenerate. 

We write the pseudopotential in the form 

w =  W” + wso (2.3) 
where WO is the spin-independent part used by Misra and Roth (1969) and Wso is the 
spin-orbit part of the pseudopotential. Wso can be written in the same form as Weisz 
(1966) 

n 
WSO = ( 1  - Pc)-  U x V V . p ( l -  

4m2c2 
where P,, the projection operator, is given by 

P ,  = ICs) I b,)(b, 1 .  (2 .5)  
I 

Here b, and t = nlk,  are the core functions (without spin) centred upon the ion states 
and is the identity operator in the spin space. 

The eigenvalue equation can then be written in the form 

(& + WO + Wso)q = E. 

where Q, is the smooth part of the wavefunction. First we solve equation (2.6) without 
W”, i.e. we solve the following equation 

(& + WO). = &q 

where we treat WO as a perturbation. We expand 

where 1 k )  and 1 k + Q )  are plane waves, and ignore for the present the other terms. Here 
k ,  the reduced wavevector, lies near the zone boundary which bisects the reciprocal 
lattice vector Q .  Using the standard techniques of degenerate perturbation theory we 
obtain the energy eigenvalues: 

where 

and the energy eigenfunctions: 

/ ~ ) = a k I k ) + a k + Q l k + ~ )  (2 .8)  

&? = a(&, + & 2 )  k fT(&2 - E , )  (2 .9)  

e l  = h 2 k 2 / 2 m  = h2(k  + Q)* /2m (2.10) 

I .+)=NIk)+MIk+Q) (2. l l a )  

iM = [ ( T  + 1 ) / 2 ~ ] ” ~  

l ~ ~ - ) = M l k ) - - N l k f Q )  (2.11b) 
where 

(2.12a) 
N =  [ ( T -  1)/2T]”2 (2.12b) 

T = ( 1  + 41 WQ 12/(&2 - &I)’). (2.13) 
We now solve the complete eigenvalue equation (equation (2.6)).  In the presence 

and 



9894 B Mishra et a1 

of the spin-orbit interaction both q+ and q -  are double degenerate with regard to spin 
states: 

a = (i) and P = (0 
and the unperturbed states for the two levels (equation (2.9)) are q+a, q + P ,  q-a  and 
rpJ. Let ql  ? ,  q1 1, rp2 and q21 be the perturbed wavefunctions. Thus each can be 
expanded as a linear combination of the unperturbed states and we write 

(2 .14~)  

(2.14b) 

(2 .14~)  

I Y 1 r )  = a1 1v-a) + a2lq-P)  + a3Iq.d + 4 v + P )  
1911) = b l l v - 4  + b 2 h - P )  + b 3 l q + 4  + b4/Q)+P) 

b 2 t )  = 4 q - 4  + C2lV-P) + ++a) + c4 Iq+P)  

and 

b 2 1 )  = d1Iq-a) + d2IQl-P) + d3IQ)+4 + d4Iq+P). (2.14d) 
Substituting equation (2.14a) in equation (2.6), taking inner products with respect to 
q-a, q-p ,  q+a and q + P  and using the general matrix element of Wso between plane 
wave states (Weisz 1966), 

W ( l k  - k'l) + A, + Ad(k' - k )  k X k' * U,,,,, (k'p'l W"-"Ikp) = iS(k - k ' )  -- ( 4m2c2 
(2.15) 

where p stands for spin states, we have four simultaneous equations in a l ,  a2, a3 and a4. 
For non-trivial solutions we have 

1 h2 

( E -  - E )  

I o  
h 

-i - DF, 
m 

h 
m 

-i - DF, 

where 

F = k x Q  

F, = F, ? iFy 

and 

h h 
m m 

i-DF, i -DF- 0 

h h 
m m 

( E -  - E )  i -DF+ -i-DF, 

h 
m 

h 
m 

i -DF-  ( E +  - E )  0 

i-DF, 0 ( E +  - E )  

= O  (2.16) 

(2.17) 

(2.18) 

Here S(Q) is the structure factor, and Ap and Ad are positive constants that account for 
the contribution of core p- and d-states, respectively. In general, the spin orbit par- 
ameters A, and j l d  are related to the orthogonality coefficients of OPW formulation and, 
as a result, depend on k .  However, it has been shown that in the limit of small k ,  such an 
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approximation for outermost p and d states hold within one per cent in grey tin at values 
of wavevectors as large as the Fermi wavevector. Solving equation (2.16), we obtain the 
eigenvalues 

E1/2 = ; ( E ,  + ~ 2 )  7 i ( ~ 2  - E ~ ) T Y  

y = ( I  + 4 ~ t ~ ~ ~ / ~ 1 ~ / m ~ ( ~ ~  - E ~ ) ’ T * ) ’ / ~ .  

(2.20) 

(2.21) 

where 

The corresponding wavefunctions are 

(2.22a) 

(2.226) 

(2.22c) 
and 

b 2 1 )  = alu?+P) + bF- I V - 4  + b*FzIV-P) (2.22d) 

where 

a = [ ( y + 1)/2y]  (2.23) 
and 

b = id? (Tt /m)D/[y(y  + 1)]1/2(~2 - E , ) T .  

Equation (2.1) can then be written as, using equations (2.22a)-(2.224 
(2.24) 

n(r) = [2 + 4(1 - 2a2)MN exp(iQ * r ) ]  + p 6(r  - R , )  (2.25) 
lkl<kF RI 

from which the change in the charge density for a single Bragg reflection is written as 

6 n ( r ,  Q) = nQ exp(iQ * r )  (2.26) 
where 

(2.27) 

Using Poisson’s equation and the Hubbard-Sham approximation (Hubbard 1957, 
1958, Sham 1955) for the exchange-correlation potential, the self-consistent potential 
of the electron becomes 

where xQ exp(iQ r )  is the exchange-correlation potential. 
The screened form factor can be written as 

WQ = N(k + 1 I k)  + W Q  
where the bare ion-potential is defined as 

(2.28) 

(2.29) 

(2.30) 

Here 0 is a theta function, P/ is an operator which picks out the Ith angular momentum 
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component of the conduction electron wavefunction and t is the ion valency. The 
summation extends to I,, the highest value of the angular momentum of the core states. 
In general both the well depth Ai and the radius R depend on 1 but are related by the 
optimization condition Ai = ze2/Ri ,  which ensures that the potential is continuous and 
the pseudowavefunction is as smooth as possible. From equations (2.29) and (2.30) we 
obtain 

(2.31) W Q  = W $  + W h  + f ( k ,  Q )  
where 

(2.32) 

From equations (2.27),  (2.28) and (2.31) and using the expressions for a, M and N ,  we 
write We as 

WQ = W$/E(&) + {[I + ( Q 2 / e ) / 4 n e 2 1 / & ( Q ) } ( v d ~  (2.33) 

where 
gQ> + f (k  e) 

VdQ is the local potential due to a depletion hole 

V d Q  = (4ne2/Q2)p 
and 

(2.34) 

(2.35) 

(2.36) 

which gives the screening of the non-local part of the bare ion potential. Further, it may 
be noted that in deriving equation (2.33), the k-dependence of W z  has been neglected. 
We is solved self-consistently. 

3. Pseudopotential formalism of Knight shift 

3.1. Evaluation of the matrix elements 

In order to evaluate the various contributions to the Knight shift, we need to evaluate 
first the various matrix elements that occur in the expressions for K,, KO and K,, (Tripathi 
eta1 1982). The matrix elements of n, U, ( 1 / r ) ,  etc, which occur in these expressions are 
evaluated by using the pseudowavefunctions obtained in equations (2.22). However, it 
may be noted that one cannot evaluate the hyperfine matrix elements in a similar manner 
since the pseudowavefunctions do not estimate correctly the spin-density at the nuclear 
site. In fact, the effect of the core states is predominant in this case. Hence we use 
the orthogonalized plane waves (OPWS) to evaluate these hyperfine matrix elements. 
Following a procedure similar to that outlined to obtain equations (2.22) we write the 
conduction electron wavefunctions I) ( OPWS) as: 

(3.  l a )  

(3.  l b )  
I h r )  = a i + - a )  - b * F z l v + 4  - b*F+ lv+P) 
1/91 > =  a1V-B) - b*F- 1V.a) - bF,IVj+P) 
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I l l ,2f)=al l l ,+~u)+bFzIW-a)+bF+Iv-P) (3. I C )  

I W 2 1 ) = ~ l l l , + ~ ) + ~ ~ - / l l , - ~ ) + ~ * ~ z I v - P )  (3. Id) 
where 

v 2 ( r ) = -  Q ) ~ ( ~ ) - X A ~ ,  exp(ik*R,)b,(r-R;) 1 . (3.2) ci ' C  i .  i 

Here 

A,,  = b: ( r ) q t ( r )  dr .  (3.3) i 
C, and C- are the normalized constants 

(3.4) 2 1 
s.2 C",1--IAlil 

where S2 is the unit cell volume, the b ;  are the atomic core functions and we sum over 
all the core states. 

The ionic core states and the plane wave states are expressed in terms of the spherical 
harmonics: 

bt(r> 6 ,  q) = R n / ( r ) Y / m ( o ,  91) (3.5) 
and 

Here Rn/(r )  are the radial parts of the atomic core functions andjl(kr) are the spherical 
Bessel functions. Assuming that the ion core states do not overlap, we have the prob- 
ability density at the nuclear site R,,  

2 1 
IVjlk+(Rs)12 =c',{M + N -  X ~ R . o ( 0 ) [ M B n o ( I k + Q l )  n + NBflo(k) l ]  (3.7) 

where 
4 n  

C t  = 1 - - (21 + 1)[N2B$(k) + M 2 B $ (  Ik + Qi) 
Q n./ 

where 

-2MNBn/(k)Bn/(Ik + QI)f'/(c0~6)1. (3.11) 
It may be noted that while evaluating the hyperfine matrix elements of the type 
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we have only considered the contact part of the hyperfine interaction. The orbital and 
dipolar hyperfine interactions are expected to be small for the systems considered. 

3.2. Evaluation of the chemical potential 

The number of electrons per unit volume n' is given by the expression 
1 , -  

n' = d3kf (Ek  - E )  
4n  

(3.13) 

where f (Ek - E )  is the Fermi function, E is the chemical potential and Ek is the one- 
electron energy obtained in equation (2.20). In cylindrical coordinate systems 

(3.14) d 3 k  = i d k i  dk,  dq, 

where k i  = kf + k:. Defining q ,  = k ,  + Q/2, equation (3.13) can be written as 
1 r  r 

(3.15) 

Integrating the right-hand side of equation (3.15) by parts and using the fact that at low 
temperaturesf'(E - E )  = -6(E - E ) ,  we obtain 

1 
n' = -! dq,  1 ki6(E-  E )  dE.  4n 

(3.16) 

Now integration over E in equation (3.16) causes k ;  to be replaced by 

k i  = -9: + 6Q2 + ( p  - l)Q2/4 + Q(aqi + /?Q2)1'2 (3.17) 

which is obtained by solving E - 6 = 0. In equation (3.17) 

a = l - 2 6  (3.18) 

6 = 2D2/h2 (3.19) 

p = t 2  + 62 + ( p  - 1)6/2 (3.20) 

t2  = (4m2W2,)/(fi4Q4) (3.21) 

p = 8mE/(h2Q2). (3.22) 
Using the &function property and the relation 

Y = (3.23) 

equation (3.16) can be written as 

(3.24) n' = - Q 3  1'' dy[ -y2  + p  + 46 - 1 f 2(ay2 + 4p)'/*] 
Y -  

32n2 

where 
y* = [I1 + p  f 2(p + 4 t 2 ) ' / 2 / ] ' / 2 .  (3.25) 

For Q > 2kF, both y+ and y- are positive and the integration in equation (3.24) is 
evaluated taking the positive sign before the square root term. For Q < 2k,, the inte- 
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gration is separated into two parts; the limit of one is from y- to 0, in which case we take 
the negative sign and y-  = - 1 1 + p - 2-1, and the other is from 0 to y+ in which 
case we take the positive sign. Further, from the free electron theory 

n’ = $(Q3/32n2)pi” (3.26) 

where 

P O  8mEo/n2Q2 (3.27) 

and go is the free electron Fermi energy. From equations (3.24) and (3.26), we have 

(3.28) 

Writing the right-hand side as F ( p ) ,  we write (3.28) in the following form 

P = P o  - [ F ( P )  - P I .  (3.29) 

The chemical potential can be evaluated from (3.29) by the process of reiteration. 

3.3. Evaluation of the exchange enhancement factor 

The exchange enhancement factor occurring in K,  is given by (equation (4.20) of Tripathi 
et a1 (1982)) 

(3.30) 

where we have made an intraband interaction approximation and 

U,, ( k ,  k ’ )  = J w L p  (rlwflkp, ( T ’ ) V e f f  ( r ,  0 4 C l n k ’ p  ( r )  w L p ,  (4 d r d r’.  

We assume the Thomas-Fermi model for the Coulomb potential 

(3.31) 

u e f f ( r , r ’ )  = e2 exp(-Alr- r ’ i ) / l r - r ‘ I  (3.32) 

(3.33) 

For evaluating vnn(k,  k ’ )  in (3.32), we do not consider the core states. Hence we use the 
pseudowavefunctions obtained in (2.22). From (2.22), (3.31) and (3.32), we have 

(3.34) 

where 

M~ = ne2( [ (1  + x,)(I + x ~ ) ] ~ / ~  + t 2 ~ , ~ , / q , q : [ ( 1  + x1)(1 + X2)]1/2)2 

M ?  = ne2(t2X:(1 + X2)/qz(1 + XI)) 

xz = q,/(q:2 + t 2 ) ” 2  

(3.35) 

M 2  = ne2(t2X:(l + Xl)/ql(l + X2)) (3.36) 

(3.37) 

(3.39) 
x1 = q* / (q f  + t 2 )”2  (3.38) 
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qz = k ,  + Q/2 
q: = k:  + Q/2 .  
ail (k)  was evaluated numerically using cylindrical coordinates. 

(3.40) 
(3.41) 

4. Evaluation of the Knight shift 

The summations over k states occurring in K,, K, and K,, (equations (3.43), (3.44) and 
(4.21) of Tripathi et a1 (1982)) are evaluated by using the cylindrical coordinate system. 
Using equations (2.20), (3.23), (3.30) and the b-function properties, K!('!(Q) can be 
written as 

where F ( y )  is the right-hand side of equation (3.17), 
dE/dk; = h2/2m + i A E B E Q 2 / ( I  + B E Q 2 k i ) I t 2  
A E  = -B(h2/m2)T(Q2 + 2 k . Q )  
B E  = 4(h2/m2>D2/[( .c2 - e l ) '  + 41 W ,  1 2 ] .  

In (4.1) the 11 and 1 components can be obtained by applying the magnetic field in the 
z-direction and x or y directions, respectively. Similarly, we obtain: 

It may be noted that K,(Q), &(e) and K, , (Q)  are the contributions to the Knight 
shift in the single Bragg reflection case. However, we consider a more realistic case in 
which a number of Bragg reflections occur, some of which cut the Fermi surface. We 
shall assume that the different Bragg planes are independent, thereby meaning that we 
neglect the crossing on the Fermi surface of two or three Bragg planes. This is based on 
the assumption that the pseudopotential is sufficiently small that we can treat only one 
Bragg plane at a time to better than the second order. 

In order to calculate the contributions from many Bragg reflections, we write K,, K, 
and K,, in the form 

K!(-Lj = Kh + oE')(Q) (4.7) 
Q 

KEij  = Kf,  + D"'j(Q) (4.8j 
Q 

K!L-) = K[',-Lj(Q) (4.9) 
Q 

where K :  and KL are the contributions to the Knight shift in the presence of electron- 
electron interactions but in the absence of both band and spin-orbit effects. and 
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Table 1. Details of the calculations of the Knight shift in alkali metals 

Li 0.05142 -0.021 23 -2.950 0.797 -0.3277 X 

Na 0.1172 -0.017 23 - 1.688 0.065 0.1136 X 

Rb 0.4991 0.0430 -0.7319 -0.1889 0.1039 X 

Cs 0.9056 0.3053 -0.5757 -0.3130 0.3489 x 

K 0.2888 0.0062 -0.8923 -0.1317 0.1090 x 10-4 

(4.12) 

In (4.10) and (4.11) the last terms are the correction terms due to the inclusion of many- 
Bragg reflections and are obtained following a procedure similar to the technique 
followed by Misra et a1 (1971). 

Since we are formulating the problem for simple metals we derive expressions for 
the isotropic and anisotropic components of the Knight shift. It may be noted that even 
for cubic metals, the spin-orbit interaction makes the Knight shift anisotropic. Thus K,, 
KO and K,, can be written as 

K ,  = SK! + $K: (4.13) 

K 0 = LKll 3 0  + i K 1  (4.14) 

K so =LKll 3 so + i K & .  (4.15) 

The Hartree-Fock wavefunctions were used from Clementi’s table (Clementi 1968) 
for metals with atomic numbers less than thirty and from Mann’s table (Mann 1968) for 
other metals. 

The non-local pseudopotential W ,  occurs in an involved manner in our expressions 
for K .  We write the model potential obtained by us in (2.33) in the form 

(4.16) W Q ( ~ )  = Wb + f ( k ,  Q )  
where 

W b  = (1/&(Q))[W$ $- (1 + Q * A Q / ~ ~ ~ * ) ( V ~ Q  $- ~ Q ) I  (4.17) 

is the local part of the model potential and is essentially independent of k. We have 
calculated We separately by a reiteration process since both &(e) and gQ are functions 
of W ,  as evident from (2.36) and (2.37). The second term f ( k ,  Q )  is non-local and 
consequently retained in the angular integrations. The model potential parameter used 
in the calculations has been taken from Ese and Reissland (1973), while the values of p 
have been taken from Shaw (1968). The values of A, and Ad have been calculated 
following a procedure outlined by Weisz (1966) and using Herman-Skillman atomic 
functions (Herman and Skillman 1963). 

5. Results and discussion 

We have tabulated our results in tables 1-4. In all the systems studied, the spin con- 
tribution to the Knight shift K, is still the dominant term. However, the importance of 
K,, increases as one goes from the lighter metals to heavier ones. As expected KO is small 
in most cases. 
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Table 2. Details of calculations of the Knight shift in divalent HCP and other metals. 

Be 0.066 32 -0.070 76 -0.070 72 -0.1566 
Mg 0.1266 -0.020 10 -0.021 24 -0.055 22 
Zn 0.4589 -0.1490 -0.1472 -0.083 63 
AI 0.1249 0.0489 0.0445 -0.1156 
Ga 0.4353 -0.0536 - 0.0522 -0.097 99 

Be 0.1044 0.1040 0.5085 x IO-’ 0.7087 X lo-’ 

Zn 0.046 82 0.046 86 0.1084 x 0.1377 x 
AI -0.1458 -0.0364 0.2662 x 0.2659 x 
Ga 0.007 19 0.006 88 0.6292 x 0.1885 x 

Mg 0.2051 0.2046 -0.2875 X lo-’ -0.5217 X lo-’ 

As regards the alkali metals, the agreement of our results with experiment is fairly 
good. From table 1 it is clearly evident that the band structure effects are important in 
the Li case, and to some extent in caesium. Sodium, potassium and rubidium behave 
almost as free-electron-like systems. KO is much smaller than K,  in all the metals. 
However, K,, is important in heavier metals. Indeed it is of the same order as K,  in the 
case of Cs. It would be pertinent at this stage to compare our results with some of the 
recently published theoretical results by Styles and Tranfield (ST) (1978) and Zaremba 
and Zobin (zz) (1980) employing markedly different techniques. While the ST cal- 
culations employ a non-local model-potential technique to calculate the spin-density and 
experimental values of the spin susceptibility, the zz technique formulated a linear 
response theory to calculate the Knight shift in metals based on the density functional 
formalism (Hohenberg and Kohn 1964, Kohn and Sham 1965). The ST calculations are 
not self-consistant in the sense that they use experimental values for the spin suscep- 
tibility. Further, the quantitative agreement even for a free-electron-like system such as 
potassium is far from satisfactory. On the other hand, the zz calculations give different 
results for different exchange-correlation potentials. Moreover, in the case of Rb and 
Cs, their agreement with experiment is poor, and is probably due to the neglect of 
relativistic effects. In comparison, there is fair agreement of our results with experiment 
in all the alkali metals. 

The remarkability of the present work rests on its success to explain the negative 
Knight shift in Be. This feat has been achieved due to two important factors: (i) the use 
of our general theory of Knight shift (Tripathi et a1 1982) and (ii) the use of a non-local 
pseudopotential formalism. To elucidate the first point, we emphasize that our K,  value 
is the result of a first-principles derivation, while the conventional K, was obtained based 
on the simplest approximations. The conventional K, depends on x, and the averaged 
value of the spin density ( 1  ~ K r ( 0 ) 1 2 ) a v  at the Fermi surface, and both these quantities 
are positive. It may be noted that, in the most rigorous analysis, x, is proportional to the 
square of the effective g factor. In comparison, our K, depends only on the effective g 
factor. Therefore, while the dependence of the conventional K, on x, is linear, it is non- 
linear in our case. This is a remarkable difference between the conventional K, and our 

Furthermore, while the conventional K,  employs the averaged value of the spin 
density at the Fermi surface, our K,  involves the summation over all the kstates and thus 

K,. 
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the actual integration over the Fermi volume. This difference is indeed vital for systems 
where the band structure effects are important. 

It may be noted that Petzinger and Munjal(l977) also considered the entire occupied 
states in calculating the hyperfine fields at positive muons in Ni. If we analyse the results, 
it can be easily concluded that the band structure effects are really very important in 
beryllium. From table 2, it is very clear that while in the case of Mg and Zn, Kd is greater 
than ZQ D,(Q),  which is due to band effects, in the case of Be the latter is greater than 
K P ' .  In all the three cases Kf is positive and band effect contributions are negative. 
Since only in Be the band effect contribution is more than that due to the free electron 
approximation, the Knight shift in Be becomes negative. As expected, KO and K,, are 
very small in comparison to K, in Be. This is in contrast with the Gerstner and Cutler 
(1969) result which shows that diamagnetism of conduction electrons is responsible for 
the negative Knight shift in beryllium. 

While the orbital contribution is small in all the cases considered, the spin-orbit 
contribution is found to be important in zinc and gallium. In these cases K,, is of the 
same order as K,. This demonstrates that the spin-orbit contribution is an important 
factor in explaining the Knight shift in heavier metals. We emphasize that in most cases 
the agreement with experiment, where available, is fairly good. 

6. Summary and conclusion 

The principal results of this work is obtaining tractable expressions for the various 
contributions to the Knight shift in metals through the use of pseudopotential formalisms 
and degenerate perturbation theory. The many-body and spin-orbit effects have been 
included in the calculationsfrom the beginning in a systematic way. While in the previous 
calculations of the Knight shift in metals, only the spin contribution to K ,  i.e. K,, has 
been considered, the present work elucidates for the first time the distinguishability of 
various contributing mechanisms as separate contributions to the Knight shift. 

We have extended the optimized model potential of Shaw to evaluate the non- 
local pseudopotential by first obtaining the pseudo wavefunctions using degenerate 
perturbation theory in which the pseudopotential has been treated as a perturbation. In 
order to evaluate the hyperfine matrix elements occurring in different contributions to 
K ,  we have constructed the OPWS, where the pseudowavefunctions obtained have been 
used for the smooth parts of the OPWS. The exchange enhancement parameter and the 
chemical potential have been calculated through the use of the pseudowavefunctions 
and the corresponding energies. 

It may be noted that in some of the previous calculations of the Knight shift efforts 
have been made to concentrate on the spin-density part, and the spin-susceptibility has 
usually been taken from experiments. On the other hand, although calculations based 
on the spin-density formalism (SDF) have considered both parts, the results are sensitive 
to the approximations for the exchange and correlation potential. Thus, our calculation, 
besides being a first principle one, has the added advantage that the self consistency 
between the hyperfine and crystalline parts has been carefully accounted for. 

In conclusion, we believe that in this work we have made a serious effort to calculate 
the Knight shift in metals in a systematic way. Our calculation, in contrast to other 
calculations, shows for the first time excellent agreement with experimental results in 
most of the metals chosen for the calculations. The fact that the present formalism works 
well for systems with diverse characteristics shows the versatility of the theory. For 
example, while in Li and Be the band structure effects are supposed to be important, in 
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heavier metals like Rb, Cs and Zn, the spin-orbit effects contribute significantly. The 
success of this theory clearly shows that various important contributing mechanisms 
have been taken into account adequately. Finally, we note that the theory is general and 
can be applied to other metals where the pseudopotential formalism is valid. 
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